Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Wenhua Bi,* Daofeng Sun, Rong Cao and Yanqin Wang

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: whbi@fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.009 Å R factor = 0.056 wR factor = 0.141 Data-to-parameter ratio = 9.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[aqua(phenanthroline)zinc(II)]µ-cyclohexanedicarboxylato]

The title complex, $[Zn(C_8H_{10}O_4)(C_{12}H_8N_2)(H_2O)]_n$, has a chain structure. The central Zn^{II} ion is coordinated by four water and carboxylate O atoms and two N atoms from 1,10-phenanthroline. All the cyclohexanedicarboxylate ligands are in an *e,a-cis*-conformation and each is linked to two Zn^{II} ions in chelating and monodentate modes. The most interesting feature of the structure is that it possesses a 2_1 helical axis in the chain.

Received 5 April 2004 Accepted 20 April 2004 Online 8 May 2004

Comment

The title compound, (I), is isostructural with its nickel analog (Qi *et al.*, 2003).

Experimental

 $Zn(NO_3)_2(H_2O)_6$ (0.089 g, 0.3 mmol), 1,4-cyclohexanedicarboxylic acid (0.103 g, 0.6 mmol) and 1,10-phenanthroline (0.054 g, 0.3 mmol) were dissolved in 20 ml of a mixture of ethanol and water (1:1) and

Figure 1

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved The coordination environment of the Zn^{II} atom in the title complex, shown with 30% probability displacement ellipsoids. The suffix A corresponds to symmetry code (i) in Table 1.

metal-organic papers

the solution was heated in a 25 ml capacity Teflon-lined reaction vessel at 403 K for 72 h and then cooled to room temperature over a period of 12 h. Colorless block-shaped crystals of (I) were collected (yield 58.6%).

Crystal data

$$\begin{split} & [Zn(C_8H_{10}O_4)(C_{12}H_8N_2)(H_2O)] \\ & M_r = 433.75 \\ & \text{Monoclinic, } P2_1/c \\ & a = 10.0974 \ (3) \text{ Å} \\ & b = 8.8974 \ (4) \text{ Å} \\ & c = 20.2619 \ (10) \text{ Å} \\ & \beta = 99.997 \ (2)^{\circ} \\ & V = 1792.70 \ (13) \text{ Å}^3 \\ & Z = 4 \end{split}$$

Data collection

Bruker SMART CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.649, T_{max} = 0.798$ 5355 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.141$ S = 1.043098 reflections 333 parameters H-atom parameters constrained

Mo $K\alpha$ radiation Cell parameters from 1910 reflections $\theta = 2.0-25.0^{\circ}$ $\mu = 1.41 \text{ mm}^{-1}$ T = 293 (2) K Block, colorless $0.30 \times 0.24 \times 0.16 \text{ mm}$

 $D_x = 1.607 \text{ Mg m}^{-3}$

3098 independent reflections 2153 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 25.0^{\circ}$ $h = -6 \rightarrow 12$ $k = -6 \rightarrow 10$ $l = -24 \rightarrow 21$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0531P)^2 \\ &+ 5.0293P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} = 0.001 \\ \Delta\rho_{max} = 0.44 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{min} = -0.49 \text{ e } \text{ Å}^{-3} \\ &\text{Extinction correction: } SHELXL97 \\ &(\text{Sheldrick, 1997}) \\ &\text{Extinction coefficient: } 0.0040 \ (4) \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Zn-O1	2.047 (4)	Zn-O4 ⁱ	2.239 (4)
Zn-O5	2.068 (4)	O1-C1	1.274 (6)
Zn-N2	2.129 (4)	O2-C1	1.246 (6)
Zn-O3 ⁱ	2.172 (4)	O3-C8	1.247 (6)
Zn-N1	2.179 (4)	O4-C8	1.264 (6)
$\Omega_1 - Z_n - \Omega_5$	92.12 (19)	$O3^i - Zn - N1$	96.62 (16)
O1-Zn-N2	91.22 (17)	$O1-Zn-O4^{i}$	99.16 (16)
O5-Zn-N2	108.49 (18)	$O5-Zn-O4^{i}$	89.87 (16)
$O1-Zn-O3^{i}$	89.20 (16)	N2-Zn-O4 ⁱ	158.61 (17)
O5-Zn-O3 ⁱ	148.78 (16)	$O3^i - Zn - O4^i$	59.18 (14)
N2-Zn-O3 ⁱ	102.66 (16)	N1-Zn-O4 ⁱ	93.29 (15)
O1-Zn-N1	167.52 (16)	Zn-O1-C1	126.6 (4)
O5-Zn-N1	88.60 (19)	Zn ⁱⁱ -O3-C8	91.4 (3)
N2-Zn-N1	76.76 (17)	Zn ⁱⁱ -O4-C8	87.9 (3)

Symmetry codes: (i) $1 - x, \frac{1}{2} + y, \frac{3}{2} - z$; (ii) $1 - x, y - \frac{1}{2}, \frac{3}{2} - z$.

Figure 2

The chain structure of the title complex. All H atoms have been omitted for clarity.

All H atoms were positioned geometrically (C-H = 0.97 Å) and refined using a riding model $[U_{iso}(H) = 1.2U_{eq}(\text{parent atom})]$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1994); program(s) used to solve structure: *SHELXTL* (Siemens, 1994); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of China and the Natural Science Foundation of Fujian Province.

References

Qi, Y. J., Wang, Y. H., Hu, C. W., Cao, M. H. & Wang, E. B. (2003). Inorg. Chem. 42, 8519–8523.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1994). SAINT and SHELXTL (Version 5). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.